Least-squares best-fitting polynomials

1. Write down the system of linear equations that must be solved to find the least-squares best-fitting polynomial that finds the best linear and quadratic polynomials that pass through

$$
(3.5,4.7),(3.7,5.2),(7.3,6.3),(5.6,5.7),(8.6,7.9)
$$

Answer: Note that the x values do not have to be sorted.
First, set $\mathbf{y}=\left(\begin{array}{l}4.7 \\ 5.2 \\ 6.3 \\ 5.7 \\ 7.9\end{array}\right)$ and then $V_{1}=\left(\begin{array}{ll}3.5 & 1 \\ 3.7 & 1 \\ 7.3 & 1 \\ 5.6 & 1 \\ 8.6 & 1\end{array}\right)$ and $V_{2}=\left(\begin{array}{lll}12.25 & 3.5 & 1 \\ 13.69 & 3.7 & 1 \\ 53.29 & 7.3 & 1 \\ 31.36 & 5.6 & 1 \\ 73.96 & 8.6 & 1\end{array}\right)$.
Next, solve $V_{1}^{\mathrm{T}} V_{1}\binom{a_{1}}{a_{0}}=V_{1}^{\mathrm{T}} \mathbf{y}$ and $V_{2}^{\mathrm{T}} V_{2}\left(\begin{array}{c}a_{2} \\ a_{1} \\ a_{0}\end{array}\right)=V_{2}^{\mathrm{T}} \mathbf{y}$. The solution to the first gives the coefficients for the least-squares best-fitting linear polynomial $a_{1} t+a_{0}$ and the solution to the second gives the coefficients for the least-squares best-fitting quadratic polynomial $a_{2} t^{2}+a_{1} t+a_{0}$.
2. Write down the system of linear equations that must be solved to find the least-squares best-fitting polynomial that finds the best linear and quadratic polynomials that pass through

$$
(-2,4.7),(-1,5.2),(0,5.7),(1,6.3),(2,7.9)
$$

Answer:
First, set $\mathbf{y}=\left(\begin{array}{l}4.7 \\ 5.2 \\ 5.7 \\ 6.3 \\ 7.9\end{array}\right)$ and then $V_{1}=\left(\begin{array}{rr}-2 & 1 \\ -1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 2 & 1\end{array}\right)$ and $V_{2}=\left(\begin{array}{rrr}4 & -2 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 4 & 2 & 1\end{array}\right)$.
Next, solve $V_{1}^{\mathrm{T}} V_{1}\binom{a_{1}}{a_{0}}=V_{1}^{\mathrm{T}} \mathbf{y}$ and $V_{2}^{\mathrm{T}} V_{2}\left(\begin{array}{l}a_{2} \\ a_{1} \\ a_{0}\end{array}\right)=V_{2}^{\mathrm{T}} \mathbf{y}$. The solution to the first gives the coefficients for the least-squares best-fitting linear polynomial $a_{1} t+a_{0}$ and the solution to the second gives the coefficients for the least-squares best-fitting quadratic polynomial $a_{2} t^{2}+a_{1} t+a_{0}$.
2. Suppose you find the least-squares best-fitting polynomial of degree $n+1$ that passes through the $n+1$ points $\left(x_{0}, y_{0}\right), \ldots,\left(x_{n}, y_{n}\right)$ where all the x values are different. Is this equal to the interpolating polynomial that passes through these points?

Answer: Yes. Because the interpolating polynomial passes through all the y values, so the error is zero.

